Drift-Pac

Wellbore DRIFT Interpretation Package

PREPARED ESPECIALLY FOR UNAVCO

Golden Hills 2 B072
August 23, 2007

This Wellbore DRIFT Interpretation Package represents our best efforts to provide a correct interpretation. Nevertheless, since all interpretations are opinions based on inferences from electrical or other types of measurements, we cannot and do not guarantee the accuracy or correctness of any interpretation, and we shall not be liable or responsible for any loss, costs, damages, or expenses incurred or sustained by Customer resulting from any interpretation made by this document. Welenco does not warrant or guarantee the accuracy of the data, specifically including (but without limitations) the accuracy of data transmitted by electronic process, and Welenco will not be responsible for accidental or intentional interception of such data by third parties. Welenco employees are not empowered to change or otherwise modify the attached interpretation. By accepting this DRIFT Interpretation Package, the Customer agrees to the foregoing, and to the General Terms and Conditions of Welenco.

welenco

(800) 445-9914

Methodology: Balanced Tangential
Lat.:
Long.:
Sec: Twp: Rge: Meridian:

Measured Data			Drift Computations				Rectangular Computations			
Depth, Feet	Inclination, Degrees From Vertical	Azimuth, Degrees, True	Course Deviation, Feet	True Vertical Depth, Feet	Drift Distance, Feet	Drift Bearing, Degrees, True	Latitude, Feet	Departure, Feet	Total Latitude, Feet	Total Departure, Feet
$400{ }^{\prime}$	$1.24{ }^{\circ}$	166°	0.00'	400.00'	0.00' (.00')	00.00 ${ }^{\circ}$.00'	0.00'	.00'	0.00'
405'	$0.91{ }^{\circ}$	112°	0.08'	404.99'	0.08' (.96")	143.50°	-.07'	0.05'	-.07'	0.05'
410'	$1.02{ }^{\circ}$	060°	0.08'	409.98'	0.14' (1.68')	115.40°	.01'	0.08'	-.06'	$0.13 '$
415'	$1.06{ }^{\circ}$	073°	0.09'	414.97'	0.21' (2.52')	96.70°	.04'	0.08'	-.02'	0.21'
420'	$1.37{ }^{\circ}$	$060{ }^{\circ}$	0.11'	419.96'	0.30' (3.60')	86.30°	.04'	0.10'	.02'	0.30'
425'	$1.57{ }^{\circ}$	$059{ }^{\circ}$	0.13'	424.95'	0.42' (5.04')	78.50°	.07'	0.11'	.08'	0.41'
4301	$1.58{ }^{\circ}$	$067{ }^{\circ}$	$0.14{ }^{\prime}$	429.94'	$0.56{ }^{\prime}$ (6.72')	74.70°	.06'	0.12'	.15'	$0.54{ }^{\prime}$
435'	1.41°	$066{ }^{\circ}$	0.13'	434.93'	$0.68{ }^{\text {(}} 8.16{ }^{\prime \prime}$)	73.20°	.05'	0.12'	.20'	0.66'
$440{ }^{\prime}$	1.09°	$056{ }^{\circ}$	$0.11{ }^{\prime}$	439.92'	0.79 (9.48")	71.60°	.05'	0.10'	.25'	$0.75{ }^{\prime}$
445'	$1.40{ }^{\circ}$	052°	0.11'	444.91'	0.90' (10.80')	69.50°	.06'	0.09'	.31'	0.84'
450'	$1.85{ }^{\circ}$	$075{ }^{\circ}$	$0.14{ }^{\prime}$	449.90'	1.04' (12.48")	68.90°	.06'	0.13 '	.37'	$0.97{ }^{\prime}$
455'	$0.66{ }^{\circ}$	077°	0.11'	454.89'	$1.14{ }^{\text {' }}$ (13.68")	69.60°	.03'	$0.11{ }^{\prime}$.40'	1.07'
460'	$1.60{ }^{\circ}$	017°	0.09'	459.88'	1.22' (14.64")	67.10°	.07'	0.05'	.47'	1.12'
465'	$2.65{ }^{\circ}$	$067{ }^{\circ}$	0.17'	464.87'	1.38' (16.56")	64.90°	.11'	0.13'	.58'	1.25'
$470{ }^{\prime}$	$0.51{ }^{\circ}$	$053{ }^{\circ}$	0.14'	469.86'	1.51' (18.12")	64.90°	.06'	0.12'	.64'	$1.37{ }^{\prime}$
475'	$1.36{ }^{\circ}$	073°	0.08'	474.85'	1.59 ' (19.08")	65.00°	.03'	0.08'	.67'	$1.45{ }^{\prime}$
480'	$1.63{ }^{\circ}$	083°	0.13'	479.84'	1.72' (20.64")	66.00°	.03'	0.13'	.70'	$1.57{ }^{\prime}$
485'	$1.76{ }^{\circ}$	$024{ }^{\circ}$	0.13'	484.83'	1.85' (22.20')	65.10°	.08'	0.10'	.78'	1.68'
490'	1.10°	113°	0.09'	489.82'	1.94' (23.28")	64.60°	.05'	0.08'	.83'	1.75'
495'	$3.14{ }^{\circ}$	$204{ }^{\circ}$	0.14'	494.81'	1.87' (22.44")	68.50°	-.14'	-0.01'	.69'	1.74'
500'	$1.46{ }^{\circ}$	116°	0.15'	499.80'	1.82' (21.84')	73.00°	-.15'	0.00'	.53'	1.74'
505'	$0.85{ }^{\circ}$	106°	0.10'	504.79'	1.90' (22.80')	74.90°	-. 04	0.09'	.50'	1.83'
510'	1.66°	$097{ }^{\circ}$	0.11'	509.78'	2.00' (24.00')	76.20°	-.02'	0.11'	.48'	1.94'
515'	$1.06{ }^{\circ}$	059 ${ }^{\circ}$	0.11'	$514.77{ }^{\prime}$	$2.11{ }^{\prime}$ (25.32')	76.50°	.02'	$0.11{ }^{\prime}$.49'	2.05'
520'	2.00°	080 ${ }^{\circ}$	$0.13{ }^{\prime}$	519.76'	2.24' (26.88")	76.30°	.04'	0.13 '	.53'	$2.18{ }^{\prime}$
525'	$2.07{ }^{\circ}$	$028{ }^{\circ}$	0.16'	524.75'	2.39 ' (28.68')	74.80°	.10'	0.13'	.63'	2.31'
530'	0.30°	$178{ }^{\circ}$	0.08'	529.74'	2.45' (29.40')	73.60°	.07'	0.04'	.69'	2.35'

Page No. 1
TVD: 539.72'
Final Drift Distance: 2.53' (30.36")
Final Drift Bearing: $\quad \underline{\mathbf{7 2 . 1 0}}{ }^{\circ}$

Wellbore Drift Interpretation

welenco

(800) 445-9914

[^0]Final Drift Distance: 2.53' (30.36")
Final Drift Bearing: $\quad \underline{72.10^{\circ}}$

Copyright by Welenco, Inc. (800) 445-9914

Drift-Pac 3-D Projection View - Golden Hills 2 B072

 UNAVCODrift Distance $=\mathbf{2 . 5 3}$ Feet \quad Drift Bearing $=$ 72.1 Degrees \quad True Vertical Depth $=539.72$ Feet

Depth (Feet)

Drift-Pac Polar View - Golden Hills 2 B072

DRIFT-PAC METHODOLOGY

Balanced Tangential Method

The Balanced Tangential Method uses the inclination and direction angles at the upper and lower ends of the course length in a manner so as to balance the two sets of measured angles over a course length. From a theoretical standpoint, this method combines the trigonometric functions to provide the average balanced inclination and direction angles, which are used in standard computational procedures. Other common names for this method are Vector Averaging, Acceleration, and Trapezoidal.

[^0]: Page No. 2
 TVD: 539.72'

